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ABSTRACT

Interacting Strategy Sets in Multiobjective
Competition; A Dominance Cone Constrained Game Solution

by

A. Charnes, Z. Huang, J.J. Rousseau, J. Semple
(The University of Texas at Austin)

Models employed in evaluation or stipulation of regulatory policies involving competition and/or

differing objectives of competing parties have sometimes been seriously deficient in accounting for

interactions between the parties' strategies or in allowing for multiple objectives. Classical game-

theoretical models, wherein the strategy set is the topological product of the individual parties strategy
q

sets, do not encompass such situations. The new "dominance cones" method and class of solutions

(Charnes, Cooper, Huang, Wei) is herein further extended to such extensions of classical games. This is

applied to an example of Harker without requiring his variational and quasi-variational inequalities or point-

to-set mappings. 6 r "-
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INTERACTING STRATEGY SETS IN MULTIOBJECTIVE COMPETITION;
A DOMINANCE CONE CONSTRAINED GAME SOLUTION

by

A. Chames, Z.M. Huang, J.J. Rousseau, and J. Semple

1. Introduction

Models employed in evaluation or stipulation of regulatory policies involving competition and/or

differing objectives of competing parties have sometimes been seriously deficient in accounting for

interations between the parties' strategies or in allowing for multiple objectives. Classical game-theoretical

models, wherein the strategy set is the topological product of the individual parties stragy sets, do not

treat such situations. They can however be handled by the new "dominance cones" method and class of

solutions (Charnes, Cooper, Wei and Huang [21) to such extensions of classical games. Herein we extend

the "C2WH" method to obtain more general results looking forward to resolution (in a later paper) of a

*competitive situation in transportation with interacting strategy sets [4].

Harker (1986) [51 used the Variational Inequality (VI) method to discuss the Generalized Nash

Equilibrium Games (GNE) and gave an example in which only one solution can be found by (VI). Using the

"dominance cones" method given in our paper, we can also find all the (GNE) solutions of the example

given by Harker.

2. Nondominated Equilibrium Points

Defito ja2.1: Let S be a set in Em , the set S* = {y e Em : xTy!_ 0 for all XE S) is called the negative

polar cone of S.

Dfjniio.2: Let A be a cone in Em. A is said to be "acute" if there exists an open half-space

H = {xeEm:aTx>0 , a 0)

such that

' AcHU{O}

Lemma2.1: Let A and AI be cones in Em

If A c A,, then A' : A;
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(ii) Int A* if and only if A is acute.

(ii) When A is acute, Int A*={ yE Em:xTy < 0 for all x - A and x 0 }and

A r) (-A) = (0).

(iv) If A is a convex cone, then (A*)* = A.

De0Iiouj 2.3: Let S be a set in Emx S.

The tangency cone of S at i is denoted by T(S, ):

T(S, R) = h e Em : there exists a sequence { xk } and a sequence { .k } such that

L' S
lira Xk(X'), where xk 6 S, Xk >0 and rlim Xk=iX

For definitions and properties of cones, polar cones and direction cones the reader is referred to

[1], [3], [61, [7], [8] and [9].

Definitlon_2.4: Let S be a convex set in Em , A be a convex cone in En . A real-valued vector function

G:S - En is A- concave on S if

G( Xx'+(l ..Xx2) -(XG(x') +(I - 4G(x2)I e A

forall x1 ,x2 E S and X e (0,1). -a

Lemma 2.2: Let A be a closed convex cone in En, S be a convex set in Em, G :S - En be

differentiable in a open set which contains S. If G is A -concave on S, then for every

x , x2 c S, we have

G(xl) C X 1)x e x G(X2) . A

Proof: Since G is A -concave on S, for every x1, x2 E S I

G( x2+(1 -4x1) (XG X2)+(1-4G( x')) e A foraHc (0,1)

Thus

Letting X - 0+, we have a,

G(xli+ V.,G(xl) (X2_Xl) e G~x 2) + A

+ .

Q.E.D. %

II
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Lemma 2.3: Let S be a convex set in Em, A be a convex cone in En , G:S --+ En . If G is A- concave

on S, then for every p E (-A*), PTG is concave on S.

Since G is A-concave on S, forall x1,x 2 e S and all X E (0,1), we have

G(Xx1+ (1 -.4x2) - (XG(xl1) +(1 -. 4 G(x2)) E A

Thus for every p E (-A*), we have

pTG(Xx1+(1 - x2) > pT G(x1)+(1 -4pTcG(x2)

forall X E (0,1).

Q.E.D.

Lemma 2A: Let S be a convex set in Em, A be a closed convex cone in En, G : S -- En. If, for

arbitrary p e A*, pTG is concave on S, then G is (-A) - concave on S.

Proof: Since for arbitrary p • A* and x, y E S, we have

pG(Xx +(1 -4y) 4,z WG(x)+(l -pTG(y) foral X e (0,1)

i.e.,
pT(G(Xx+(1 -4y) - (XG(x)+(1 -4G(y))} > 0 forall X E (0,1)

By Lemma 2. 1,

G(Xx +(1 - y) - (X G(x) +(i -4 G(y)) E -.A* = -A

forall X e (0,1).

This means that G is (-A) - concave on S.

Q.E.D.

A Multi-Payoff Constrained N-person Game In Normal Form

D.efin 2.: A mufti-payoff constrained n-person game in normal form is given by n nonempty sets Si

in E (i = 1,2 ... , n), the strategy sets of the players 1, 2 ... , n; a real-valued vector function G =

(gl....gm)T: Six ... xSn -- Em, the cross-constraint function of the n players; for each player i

there is a real-valued vector function A= A...Aq: Sx .... xSn-- E , the vector payoff

function of the ith player ( i = 1, 2, ..., n) a convex cone K in Em , the constraint cone; a convex

cone W in Et , the dominance cone; 9= x=(x .... x,):G(x)E K,xe S,, i= 1,2,..., n}

the constraint set.
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Such a game will be denoted by

r"= (9t,, W ; A ...... A").

D.iniiQoR2.6: Let r = (9tK, W; A ... A be a multi-payoff constrained n-person game.

SXI, .... r 9 tK is called a nondominated equilibrium point of the game r associated with

W if there exists no x = (xl, ..., Xn) E S1 x ... xSn satisfying

R . . X.-l. Xi,.Xi , in) E 9ZK (i = 1,2,..., n) suchthat

A i(-x1 .....in) e A i(x,, ..... xi-l, xi, _x',+l ..... in)+

and
A i(X1, .... n) * A'Rx , ..... x4 1,,xi, i ,i ..... -xn)

forall i = 1 ..., n. 0

Definin2.7: Let r = (K W; A be a multi-payoff constrained n-person game. Then r is %

called a (W-K)-concave game if the following four conditions hold for all i = 1,2 ..., n:

ni
(i) Si is a convex set in E

(ii) Ai(xl, .... Xn) is (-W)-concave with respect to xi on Si forfixed xj e Sj (j i, j= 1, 2. n): 1

(iii) Ai(xl .... , xn) is continuous on Six ... xSn.

(iv) G (xl, ... , Xn) is continuous and K-concave on Six ... xSn.

In the remaining sections, except where specifically noted, we shall always use the following ,.,

symbols:

(1) Wn--Wx ...xW, W n =WX... xW, Kn =Kx...xK
n n n

Kn = K x...xK and S = Six...xSn;

(2) "Strictly nonzero" p r Wn implies p = (p, .... pn) piE W andp 0 for all

i=1,2 ..., n;

(3) Q r -Kn implies Q = (ql ..., qn), qi E -K*, i=1,2. n;

(4) x e S implies x= (X. Xn) and xi E Si forall i= 1,2. n;

'p-



(5) For fixed xe 9tK let for all i=1,2, n

Di = (xE eS: (i, ....x1.1, xi, x%, X. ,) E 9K}

and let Dn= D D1 nx x ... xD, n. ,

Clearly, for all i = 1,2, ..., n, we have Di ) cS and D (x cS 

(6) x E D (-) implies for x = (Xl ..., Xn) that xi E Di () for all i = 1,2, n.

(7) For a real-valued vector function G(x) = (gl(x) ...... gn(x))T, we denote the "gradient" of

G(x) (really, the vector of gradients of G's n component) by

Vx,g I WX J"

VXG(x) =, (xiisavector!) "

V X g x)

(8) Fora specific p E Wn ,let

n,F p(x,y)= 7 piT A i (y j ... y. -,xi, Yi.1 .... yr for all (X y) E S xS.

(9) For a specific p E Wn , the generalized Lagrangean function is defined as follows:

nO (x,y,Q) T ' A i(y1' .., y-,1, x ,,y, 1'.... y4} + ,G Y'..y,,x. ,1 ... y, T,
q ~, G (yi, yi-1,x i ... y 4

i-1' i-1 ,.i5

forall (x,y) e SxS and 0 e -K.

3. Computing Nondominated Equilibrium Points

In this section we outline a more general technique than was given previously in [21, which

enables us to capture additional nondominated equilibrium points.

( n). .-

Lemma.3.1: Let r = J(9 K, W; A , . be a (W-K)-concave game. If X e 9 K is a nondominated .

equilibrium point of r associated with W, then there exists strictly nonzero p C W, such that for

arbitrary X E D(-), we have

A ( i.,x, xi +1 ..., <piTAi(x) forall i= 1,2 ... ,n.

'-
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Suppose that - 6 9 tK is a nondominated equilibrium point of r associated with W. This

means that there exist M n nonzero Wi E W (i = 1, 2, ... , n) and x E D nx such that .

Aix) =Ai(X 1. ... xi-lxixix+ 1 .... x + wi for all i= 1,2,..., n

For each i =1,2, ..., n, consider

Ai z EE:z- k x xi q + ....

forsome x i.E D i(n and nonzero w ie W}

It is easy to show that Ni is a convex set and 0 e A-'. Hence by the separation theorem, there

exists nonzero pi e El such that

xP zS0 forall z rA.

Next, for arbitrary x D , nonzero wi c W and X > 0, let .4

Zx .w,= Ai1 'l ..... xi-1, X i.1.' .... Xr -Ai nx +,.Wi

Then Zx,.w,E Ai and

PiR, T ., ~ -Tf +Xp'w.<
piril ..... x'i-1,,Xi, .... X4-piT'rx) w j:5

Thus

p i W Letting X - 0 , we obtain

TI
p rx " i( -1 ... i, i i+ 1 .... i Xr< pT i forall i=1, 2... n. ,

QED.( 1 V.
Lemma 3.2: Let r= 9tK, W; A'..A., e 9K and pE IntWn if for arbitrary x E D(x), we

have
...(~.X, i.~i...~r~ p Aks (3.1)

T T.

for all i = 1, 2. n, then - is a nondominated equilibrium point of r associated with W.

Proof: Suppose to the contrary that i is not a nondomonated equilibrium point of r"

associated with W. That is, there exist x c D (x) and wi c- W such that

A (x) =A ix ..... 1'.,X i, xi .... X + Wi W,0
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for all i= 1, 2,... n.

We note by Lemma 2.1 that W is an acute cone. By the acute property of W and Lemma 2.1, we
C T

have P'wi < 0, hence

p AA x ...... xi-1, x i, xi+1 .... inX < P Tfor all i l . .. n.

This contradicts (3.1).
Q.E.D.

Lemma3,3: Let r = (91K, W; A.A be a (W-K)-concave game. If X E 9 tK is a nondominated

equilibrium point of r associated with W, then there exists strictly nonzero p E Wn, such that

T -P(x, x--}-5<T -(x, -) foral X E D (x)
'-V"

Proofj: By Lemma 3.1 , there exists a strictly nonzero E E W, such that for arbitrary x E D @

we have
p.A" , •i1 ,i+ .. F 5pAn

for all i =1, 2, ... , n, then
n T, , "A ix"1 ..... i.1j, Xi, Xi.1 .... -< £ "A i( ' nx,

i-1

ie (x,ix) :P rx, x-) forall x c- D ,)
Q.E.D.

Lemma 3.4: Let F = (,K, W" A .A)., X E 9tK and AI(x) be differentiable at x with respect to

xi forfixed 1, ..... i , .... x (i= 1...., n). If there exists p E Wn such that

'P x, x--) < .'-,x--) forall x e D(x-)

then T 0
(V (X,eX) j. _) T'(D i, i) (i=1 , n)

Proof: For arbitrary h e T(Di-), x i) , there exists {x } c D (x) with

k
lim x = x i, and ),k > 0 with k -0 such that

I since 'xp(x, x) is differentiable at x , we have

S(x -X)-- + V- X * e (k)

%-
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( - - , -' .o ) t,
where X .... xi-1.xixi+1 .... x,), . 0 as k-.

Since 'p-(i, R) _ 'yx, R) for an x e %, we have

I - II0

then
V %p-( ,lx. kk xX- ( - + Xk.(x i)IIF(k) 0 .

Letting k -- , we have
v, (x, -X1 l . h <5 0 -,

Hence

Q.E.D
oN

Lemma35- Let r = (%, W; A ..... An  b a(W-K)-concavegameand i-C 'XK Forall i 1,2,

.... n, let Ai(x) be differentiable at x with respect to xi forfixed x. .... Xi-l 1,XiXi 1.... X' (i=1,,

n). If there exists p e Wn such that x satisfying

(V, 4,(x,-)) (y-I) 0 foran ye D(i,

then x is a nondominated equilibrium point of r associated with W.

Proof: By Lemma 3.2, we only need to show that for all x e D i), we have i

pA x1.  x.,xi, x,1 .... x pA IX, i= 1, ... , n.

Suppose to the contrary that there exist y e D (x and some io (i !5 io < n) such that

pOA x1 . x, o 1, X id Xi0 +1 .... n p A ,(i) (3.2)

Since r isa(W-K)-concavegame, by Lemma 2.3, pOA (x . ... X 1.1,Xio,-. -xn isconcave

with respect to xi, and thus 1
TT T 5,:_.P" A ' (x" '""- ' ' o1'X jo+' .... xin <  P"°A ' O x + P O x . ' (- o + o 3 ): ''

iy x Ofx,0 A '(x(I- X1. (3,3)

Since ,

Vx'P(x, -X= (y-x-) 0 forall ye D(x),

Letting y (xi i... xi i 0 , xi 0+1 .... x) we have

I l.P

'l,~ ~ ~ JNp. t ' S * , 'S,=,j ",.'Sj .. ', liN 
T

," . 5, *,"i -
"

* .N " . %" • -... .4. -. , -, p ,, . - ,' .', ]



V ,,. b- x Ix 1V- F, -0- wxr -.- r-

I-O -x0AOn y x

i'. -o V x oA io ( i o " ' - o _ 0 
5-a

By (3.3), we have

S .OA .. (, xi 0,xi 0 +1 .... ) 0 A '(

This contradicts (3.2). 
W

Q.E.D

Assuming X E 'XK let

=x \(V ,G( - qE(-K*) suchthat qTGlx- (x 0

Le1mma 3.6 11 Let e 9 K and G(x) be differentiable at -. '

Then 

:

"l1 D i nX', j" ic (- c * ,(x)

Definition 31: A point X e 9RK is said to be a "generalized regular point" of the constraint set 93K if

T*(D n -{X i) c('C " (x').':"

D fn ito .2.: If there exist ,

x =x xn E'x...x E n, Qc -K*n and strictly nonzero p E W* suchthat
1 

.T

Vx,C'P (x( , '-
, -d ' Vx,A nx + q VxG(x 0, xi E Si (34)

(3.4)
T T (3 5)qVq, 1 p (, = G 

(35)

Vq (x,2,Q-- ' Gj) = 0 (3.6)

for all i = 1 ... n, then we say that (-X, p, - satisfies the "generalized Kuhn Tucker" conditions.

Theorem 3,l: Let F = (9R,, W; A' ... ,A be a (W-K)-concave game. Furthermore, suppose that

X E 91K is a nondominated equilibrium point of r associated with W, and that i is a "generalized

regular point" of 9RK Then there exist Q e-K *n and strictly nonzero p E Wn such that

(x', ', Q satisfies the generalized Kuhn - Tucker conditions (3.4) - (3.6). S.

PrQj: By Lemma 3.3, there exists a strictly nonzero p • Wn such that
p

T -P x,-) !5 T (,x-R} for all x e Dlx),,i

%
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Since Rj is a generalized regular point of 9XK and

(V. P(x)I. 6) eT(Df1x),R (see Lemma 3.4)

there exist q E E such that?

and

q (-K-), 4iG) o0
for all i= 1, 2, ..., n.

i.e.,
T .

for ail i =1, 2,..., n. where n K

0. E.D.

IflQrm~: Lt =~ W A..,A be a (W-K)-conicave game, let K be closed and -XE Z

let A' be differentiable at -X with respect to xi for fixed X 1, - ,3i., i and G(x) be

diff erentiable at -X. If there exist p E Int Wn' and Q0 6 -Kn such that (X, p, 56 satisfies the

generalized Kuhn-Tucker conditions (3.4) - (3.6), then 3i is a nondominated equilibrium point of

r associated with W.%

EgQgj: According to Lemma 3.5, it suffices to show that

vp (, XI- (y -) x 0 to rall y e D (R),

For arbitrary y E %~K, we have by Lemma 2.2,

G x+ V.,G(nx (y - 6E G(y) + K

Hence

T

q A,,Gnx (y--x) 0 for any y E &~

letting y = (j, ... , xIi, Yi, xi+,.. i4 6 %~K, then
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and then
Vx P(x,-}lx.i (Y i 

= q 'VxG(-)(Yi- x" ) 
< 0 

-

forallye YE D ji,i=1,2, ... , n;

Vxqp (x,X1)x, (y--) _ 0 forall y E DO

Q.E.D.

Now, let's consider the example in Harker's paper, the two -person game depicted in Fig. 1. Each

player chooses a number xi between 0 and 10, such that the sum of these numbers is less than or equal

to 15. Harkers utility functions and constraint functions are defined in our terms by:
2

A I(x,x = 34x, - x I- (8/3) xjx2

2
A2 (x1 , X = 24.25x 2 - x2 - (5/4) X 1x2

G(x,,x= (10- x, x, 10- x, 15- xx)

1 5 2
Here W= E_,K=E+, S=E,9 K= x=(xl1,X T G(x ,,x eK

since G(x) is linear, for any point x e 9 K , x is a generalized reguair point of Wk. It is easy to check t, at

r = (91K, W; A,, A2} is a (W - K)-concave game. Hence by Theorem 3.1 and Theorem 3.2, these

nondominated equilibrium points of r are points which satisfy the generalized Kuhn-Tucker conditio '3

(3.4) - (3.6) and vice-versa. 
a,

Let -DIx, y, ),}= A , (x ,,Y2 + A2(Y , xJ} +. G (x , y } + X 2 G (y ,,x2)

T T

2)=,2  X X .... . X) , 
2  =  ( X 

2  ....2 X

where =X ) 5)= ~

Then the generalized Kuhn-Tucker conditions of r are to find (-, , X2) satisfying:

VxI(x,i, J x,,= 34-2g -(8/3)'2-,1+ X2- X5=0

Vxp x,xq x= 24.25-2x2-(5/4)x- 2 + X2- 2 =

-2) > 0, X > 0 ,2.PV X., (DX, X, q (10 -X,,X,, 10 -X2, X2,15 -X',X') _ Ox> , 1, 2.

= x(X+Z1X-2 = 0 ,

Simplifying the above, this is equivalent to finding (x, X', A2) satisfying the following system:

3..F .ad
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34-2x,-(8/3)X2 = X1 +X (3.7)X2_ - X 2+ X2 ( .7

24.25-2x2 -(5/4)x = 3-4 , (3.8)

X'( 0-x1} -- 0 , x1  10, X 0 , i=1,2 (3.9)

X2x 1 = 0 , x1  0,X2 O, i=1,2 (3.10)
'(iO-x1 = =, x2  lOX> 0 =1,2 (3.11)

X4x 2 = 0 x2 > , O, i=1,2 (3.12)

X'(115-x,-x = 0 , XS,,2! 0 , x+x 2 < 15 (3.13)

The constraint set 91K is illustrated in Fig. 1.

X2

solution set

15 t

1 3
L x

04 10

4.

Fig. 1.

We divide %K into six parts Ii, i =0, 1,2, 3,4, 5:

1a = IntgtK= '(X4 X4 : O< X1 < 10,0< X2< 10, X1+X2 < 15,

i = ((xi, xJ: 0!5 xI _ ,x 2 = 10}

12 =((x,x4: 5< x, _ 10, x1 +x 2 = 15}

13= ((x,x4: x, = 0,0<x2 < 5}

14= ((xIxA O< x 1  10,x 2 = 0) i"

15= ((x,x : x1 = 0 05x2< 10

S0
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For each part Ii , using the complementary conditions (3.9) - (3.13) it is easy to figure out which points

satisfy the system (3.7) - (3.13). The process is the following: 1

(1) I0: Since O<x 1 <10, O<x 2 <10 and x1 +x2 <15,by(3.9) -(3.13) wehave j=O i=1,2,

1=1,2, 3, 4, 5. By (3.7) and (3.8), we have

34-2x,-(8/3)x2 = 0

24.25-2X2-(5/4)x 1 = 0

then -i x) = L satisfies (3.7)-(3.13)

(2) I1: Since 0 <5 x, :5 5 and x2 = 10, by (3.9)and (3.12) we have %'=0, X4=0.

By (3.7) and (3.8), we have

34- 2x 1-(80/3) = --X' + X' (3,14)

2 224.25-20-(5/4)xl = X3 AS (3,15) ,

(a) xl = 0. By (3.13) we have X=, = 1,2.

By (3.14), X2= -422/3) < 0, which contradicts (3.10).

(b) xl = 5. by (3.10) we have X2=O, i = 1,2.

By (3.14), X,= -48/3) < 0, which contradicts (3.13).

(c) 0<x1 <5. By(3.10) and (3.13) wehave X2= Xs=0 (i=1,2) and then by (3.14)

and (3.15), we have

x1 = 11/3
2

X3 = -1/3 < 0 ,which contradticts (3.11).
I

(3) 12: Since 5<x1_<10 and Xl +x2 = 15 (obviously0<x2= 15-Xl < 10),by(3.10)-(3.12)

we have

X,= X340, i=1,2.

then by (3.7) and (3.8), we have .

34-2x,-(8/3)(15-x) -= +X5'

24.25-2(15-xl)-(5/4)x =X5

i.e., j

X1 = (2/3)x1 -6- X, (3,16)

X2= (3/4)x 1-5.75 (3.17)

S S - - - . ..W S-
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(a) xj 10 . By (3.16) and (3.17), we have

ki +XS= 2/3(3.18)
2

5= 74(3.19)

sowecanfind X1 0O, X1 o, X2= 7/4 to satisfy (3.18) and (3.19),

i.e., (JII satisfies the generalized Kuhn - Tucker conditions.

(b) xj < 10. By (3.9) we have X 0 = 1, 2. Then by (3.16) and (3.17), we have

X5 = (2/3)x 1-6

X5 = (3/4) x -5.75

letting 4 - ~ 0, we have

x 1  : 9 and x1  23/3

but xj 2:9 implies x1 23/3.

Combining (a) and (b), the segment

i~=((xx~ 9 x1  1,X 2 = 15-xj}

is the solution set of system (3.7) - (3.13) in 12, i.e., that satisfying the generalized

Kuhn - Tucker conditions.

(4) 13: Since xj =10 , 0 < X2 < 5, by (3.10) - (3.13) we have

X2'=X3'= X4'= X5'=0 ,i=1,2

By (3.7) and (3.8) , we have

34 -20 -(8/3)X2 = x

24.25 - 2X2 -50/4 = 0

then

X2 - 47/8

X,'= -5/3 <0 , which contradicts (3.9).

(5) 4~: Since 0 < xi 510, x2 = 0 , by (3.10), (3.11) and (3.13) we have

X' = 3' X', =0 =1,2

By (3.7) and (3.8) , we have

34-2x, X1'

24.25 -(5/4)x 1  4

11 -, 1q '' 711 
'q1*" .1A
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Then 2 = (5x,-97)/4 < 0 which contradicts (3.12).
'I.

(6) 15: Sincex, =0 and0 _x2 <10, by (3.9), (3.11) and (3.13), we have

xi = X3 = X5 = 0 i=1,2 ",

By (3.7) and (3.8), we have

34-(8/3)x2 -?2

224.25- 2X 2  -X4

Then ).1 = (8x 2 -102)/3 < 0 which contradicts (3.10).

Hence combining (1) - (6), the solution set of system (3.7) - (3.13) is composed of

the point (5,9) and the interval [(9,6) , (10,5)].

By Theorem 3.1 and 3.2, the set of nondominated equilibrium points of I associated

with W is composed of the point (5,9) and the interval [(9,6), (10,5)] (see fig. 1).

'p

V

'p.r

. J.
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